An Algebraic Approach to Internet Routing Part III

Timothy G. Griffin

```
timothy.griffin@cl.cam.ac.uk
            Computer Laboratory
University of Cambridge, UK
```

Departamento de Ingeniería Telemática
Escuela Politécnica Superior
Universidad Carlos III de Madrid 16, 17, 18 March, 2009

Outline for Wednesday

- A mini-metalanguage for routing algebras
- The Metarouting Toolkit (prototype)
- On algebraic metalanguage design
- Min-set constructions and multi-path routing
- A word about hot and cold potatoes

A simple grammar for a mini-metalanguage

Our mini-metalanguage will describe routing algebras

- $(S, \oplus, F \subseteq S \rightarrow S)$
- \oplus is commutative, idempotent, and has identity α.

The Semantics

For category base

- $\llbracket \mathrm{sp} \rrbracket^{\mathcal{B}}=\left(\mathbb{N} \cup\{\infty\}, \min , F_{+}\right)$
- $\llbracket b w \rrbracket^{\mathcal{B}}=\left(\mathbb{N} \cup\{\infty\}\right.$, max, $\left.F_{\text {min }}\right)$
- $\llbracket \mathrm{re} \mathrm{l} \rrbracket^{\mathcal{B}}=\left([0,1], \max , F_{\times}\right)$

For category term

- $\llbracket b \rrbracket^{\mathcal{T}}=\llbracket b \rrbracket^{\mathcal{B}}$
- $\llbracket(a) \rrbracket^{\mathcal{T}}=\llbracket a \rrbracket^{\mathcal{A}}$

The Semantics

For category algebra

- $\llbracket t \rrbracket^{\mathcal{A}}=\llbracket t \rrbracket^{\mathcal{B}}$
- \llbracket right $\mathrm{t} \rrbracket^{\mathcal{A}}=(S, \oplus,\{i\})$

$$
\text { where } \llbracket t \rrbracket^{T}=(S, \oplus, F)
$$

- 【left $\mathrm{t} \rrbracket^{\mathcal{A}}=(S, \oplus, K(S))$

$$
\text { where } \llbracket t \rrbracket^{\tilde{T}}=(S, \oplus, F)
$$

The Semantics

- $\llbracket l e x _p r o d u c t ~ t \rrbracket^{\mathcal{A}}=\llbracket t \rrbracket^{\mathcal{T}}$
- 【lex_product $t t^{\prime} \rrbracket^{\mathcal{A}}=(S, \oplus, F) \overrightarrow{\times}(T, \odot, G)=$ $(S \times T, \oplus \overrightarrow{\times} \odot, F \times G)$
where $\llbracket t \rrbracket^{\mathcal{T}}=(S, \oplus, F)$
and $\llbracket t^{\prime} \rrbracket^{T}=(T, \odot G)$
- 【lex_product $t t^{\prime} \ldots t^{\prime \prime} \rrbracket^{\mathcal{A}}=(S, \oplus, F) \overrightarrow{\times}(T, \odot, G)=$ $(S \times T, \oplus \overrightarrow{\times} \odot, F \times G)$
where $\llbracket t \rrbracket^{\mathcal{T}}=(S, \oplus, F)$ and $\llbracket l e x _p r o d u c t ~ t^{\prime} \ldots t^{\prime \prime} \rrbracket^{\mathcal{A}}=(T, \odot G)$

The Semantics

- \llbracket function_union $t \rrbracket^{\mathcal{A}}=\llbracket t \rrbracket^{\mathcal{T}}$
- 【function_union $t t^{\prime} \rrbracket^{\mathcal{A}}=(S, \oplus, F)+_{\mathrm{m}}(S, \oplus, G)=$ $(S, \oplus, F \cup \bar{G})$
where $\llbracket \mathrm{t} \rrbracket^{\mathcal{T}}=(S, \oplus, F)$
and $\llbracket t^{\prime} \rrbracket^{\mathcal{T}}=(S, \oplus G)$
- 【functon_union $t t^{\prime} \ldots t^{\prime \prime} \rrbracket^{\mathcal{A}}=(S, \oplus, F)+_{m}(S, \oplus, G)=$ $(S, \oplus, F \cup G)$

$$
\begin{aligned}
& \text { where } \llbracket t \rrbracket^{\mathcal{T}}=(S, \oplus, F) \\
& \text { and } \llbracket f u n c t o n _u n i o n t^{\prime} \ldots t^{\prime \prime} \rrbracket^{\mathcal{A}}=(S, \oplus G)
\end{aligned}
$$

Some interesting properties

Property	Definition
M	$\forall a, b \in S \forall f \in F: f(a \oplus b)=f(a) \oplus f(b)$
C	$\forall a, b \in S \forall f \in F-\{\omega\}: f(a)=f(b) \Longrightarrow a=b$
K	$\forall a, b \in S \forall f \in F: f(a)=f(b)$
I	$\forall a \in S \forall f \in F: a \neq \alpha \Longrightarrow a<{ }_{\oplus}^{\mathrm{L}} f(a)$
ND	$\forall a \in S \forall f \in F: a \leq{ }_{\oplus}^{\mathrm{L}} f(a)$

We know a few rules ...

(some of the) rules needed for global optimality

$$
\begin{aligned}
& \mathrm{M}(\operatorname{right}(S)) \\
& \mathrm{M}(\operatorname{left}(S)) \\
& \mathrm{C}(\operatorname{right}(S)) \\
& \mathrm{K}(\operatorname{left}(S)) \mathrm{M}(S \overrightarrow{\times} T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T)) \\
& \mathrm{M}\left(S+_{\mathrm{m}} T\right) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T)
\end{aligned}
$$

... and a few more rules
(some of the) rules needed for local optimality (and for loop-freedom in next-hop forwarding)

$$
\begin{aligned}
\mathrm{I}(S \overrightarrow{\times} T) & \Longleftrightarrow \mathrm{I}(S) \vee(\mathrm{ND}(S) \wedge \mathrm{I}(T)) \\
\mathrm{ND}(S \times T) & \Longleftrightarrow \mathrm{I}(S) \vee(\mathrm{ND}(S) \wedge \mathrm{ND}(T)) \\
\mathrm{I}(S+\mathrm{m} T) & \Longleftrightarrow \mathrm{I}(S) \wedge \mathrm{I}(T) \\
\mathrm{ND}\left(S+_{\mathrm{m}} T\right) & \Longleftrightarrow \mathrm{ND}(S) \wedge \mathrm{ND}(T)
\end{aligned}
$$

We can turn rules into bottom-up methods

Example : The \Longleftrightarrow rule

$$
\mathrm{M}(S \overrightarrow{\times} T) \Longleftrightarrow \mathrm{m}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T))
$$

becomes a bottom-up method for deriving property M or property $\neg \mathrm{M}$ for any expression

$$
e=\text { lex_product } t_{1} t_{2}
$$

if derive properties for t_{1}	and derive properties for t_{2}	then derive property for e
M, C	M	M
M	M, K	M
$\neg \mathrm{M}$		$\neg \mathrm{M}$
	$\neg \mathrm{M}$	$\neg \mathrm{M}$
$\neg \mathrm{C}$	$\neg \mathrm{K}$	$\neg \mathrm{M}$

Magic

We know everything about our base algebras

	M	C	K	I	ND
sp	yes	yes	no	yes	yes
bw	yes	no	no	no	yes
rel	yes	yes	no	no	yes

Now, for each algebra expression a defined by our mini-metalanguage and each property P, we can determine in a bottom-up manner whether

$$
\mathrm{P}\left(\llbracket a \rrbracket^{\mathcal{A}}\right)
$$

or

$$
\neg \mathrm{P}\left(\llbracket \mathrm{a} \rrbracket^{\mathcal{A}}\right)
$$

holds.
No proofs required at algebra specification time!

A few examples

	M	C	K	I	ND
lex_product sp bw	yes	no	no	yes	yes
(lex_product sp	sp	yes	yes	no	yes
lex_product bw					
lex_product rel	bw	no	no	no	yes
yes	no	no	no	yes	
lex_product rel bw	sp	yes	no	no	yes

(Prototype) Metarouting System

Routing language processing
Compilation

- Specification : Algorithms are currently picked from a menu, while the routing language is specified in terms of the Routing Algebra Meta-Language (RAML).
- Errors: Each algorithm is associated with properties it requires of a routing language (Example : Dijkstra requires a total order on metrics). Properties are automatically derived from RAML expressions. An error is reported when there is a mis-match.

Meet the Metarouters!

From left to right ...

- Philip Taylor
- Router configuration languages, vectoring protocols
- John Billings
- Compilation, route redistribution, off-line algorithms
- M. Abdul Alim
- Link state protocols, route redistribution
- Vilius Naudziunas
- Automating theorem proving at system design-time
- Tim Griffin
- Confusion
- Balraj Singh
- Metaforwarding
- Alex Gurney
- Algebraic theory

Our evolving metalanguage

- Our current metalanguage is much larger than the mini-metalanguage.
- Dozens of constructors, dozens of properties.
- Hundreds of rules.
- Automating the tedium of specification correctness!

Let's implement a simple scoped-product example

<edist=3, epath=['A'], idist=7, ipath=['X', 'Y']

> route-policy route-policy
set internal idist 30 set external edist 30
set internal ipath 'X' set external epath 'A'
end-policy
set external idist 1
set external ipath empty
end-policy

The external algebra

```
let inter_region =
    lex_product
    \(<\)
        edist : lte_plus,
        epath : simple_paths,
        idist : left lte_plus,
        ipath : left simple_paths
```


The internal algebra

```
let intra_region =
    lex_product
    \(<\)
        edist : right lte_plus,
        epath : right simple_paths,
        idist : lte_plus,
        ipath : simple_paths
```


The complete algebra

```
let regions =
    function_union
    \(<\)
        external : inter_region,
        internal : intra_region
    >
```


Example: regions

- Compile to C++
- Plug into e.g generalized BGP algorithm
- Deploy on routers
- Or create offline simulator

Example: generated code (you are not expected to understand it!)

```
struct times_out
{
ty11 operator()(ty7 node, ty12 export_, ty6 signature_outer_or_error)
{
    ty11 var73;
    switch (signature_outer_or_error.tag_)
    {
        case ty11::CONST: break; // Const
        case ty11::REST:
        {
            ty5 signature(signature_outer_or_error.value_);
            ty11 var75;
            switch (export_.tag_)
            {
                case 1:
                {
                    Unit x2(*export_.v1_);
                    IntBigPos var80(signature.v1_);
                    String var83(node.v1_);
                    ty1 var85(signature.v2_);
                    ty1 var82(ListSimpCons()(var83, var85)); [...]
                    } [...]
            }
            var73 = var75;
            break;
        }
    }
    return var73;
    }
};
```


The metalanguage spans multiple classes of algebraic structures

The Quadrants

NW	NE
$\frac{\text { Bisemigroups }}{(S, \oplus, \otimes)}$	$\frac{\text { Order Semigroups }}{(S, \leq, \otimes)}$
SW	SE
$\frac{\text { Semigroup Transforms }}{(S, \oplus, F)}$	$\frac{\text { Order Transforms }}{(S, \leq, F)}$

Moving around

Operations for translations between quadrants are in the metalanguage.

A few examples

$$
\begin{aligned}
& (S, \oplus, \otimes) \stackrel{\text { natord }}{\longmapsto}(S, \leq, \otimes) \\
& \downarrow^{\text {cayley }} \quad{ }^{\text {cayley }} \\
& (S, \oplus, F) \stackrel{\text { natord }}{\longrightarrow}(S, \leq, F)
\end{aligned}
$$

Properties get dragged along

$$
\begin{aligned}
& (a \neq 0 \Longrightarrow a=a \oplus(b \otimes a)) \wedge \text { natord } \\
& (b \otimes a=a \oplus(b \otimes a) \Longrightarrow a=0) \\
& \rceil^{\text {cayley }} \\
& \begin{array}{c}
(a \neq 0 \Longrightarrow a=a \oplus f(a)) \wedge \\
(f(a)=a \oplus f(a) \Longrightarrow a=0)
\end{array} \xrightarrow{\text { natord }} \quad a \neq T \Longrightarrow a<f(a)
\end{aligned}
$$

New, experimental constuctors for "min-sets"

- For explicit multi-path routing.

Definition (First, Derived Order Relations)

$$
\begin{array}{rlr}
a<b & \equiv a \lesssim b \wedge \neg(a \lesssim b) & a \text { is (strictly) less than } b \\
a \sim b & \equiv a \lesssim b \wedge b \lesssim a & a \text { is equivalent to } b \\
a \asymp b & \equiv a \lesssim b \vee b \lesssim a & a \text { is comparable with } b \\
a \sharp b & \equiv \neg(a \lesssim b) \wedge \neg(b \lesssim a) & a \text { is incomparable with } b .
\end{array}
$$

Direct Product Order

Definition (Direct Product)

Let $(S, \lesssim s)$ and ($T, \lesssim T$) be preordered sets. Then their direct product is denoted $(S, \lesssim s) \times(T, \lesssim T)=(S \times T, \lesssim)$, where

$$
\left(s_{1}, t_{1}\right) \lesssim\left(s_{2}, t_{2}\right) \Longleftrightarrow s_{1} \lesssim s s_{2} \wedge t_{1} \lesssim \tau t_{2} .
$$

Lemma

$$
\begin{array}{rll}
\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right) & \Longleftrightarrow & a_{1} \sim_{A} a_{2} \wedge b_{1} \sim_{B} b_{2} \\
\left(a_{1}, b_{1}\right) \sharp\left(a_{2}, b_{2}\right) & \Longleftrightarrow & \left(\begin{array}{l}
a_{1} \sharp a_{2} \vee \\
b_{1} \sharp b_{2} \vee \\
\left(a_{2}<a_{1} \wedge b_{1}<b_{2}\right) \vee \\
\left(b_{2}<b_{1} \wedge a_{1}<a_{2}\right)
\end{array}\right)
\end{array}
$$

Direct product example

Lexicographic Product Order

Definition (Lexicographic Product)

Let $(S, \lesssim s)$ and ($T, \lesssim T$) be preordered sets. Then their Lexicographic product is denoted $(S, \lesssim S) \overrightarrow{\times}(T, \lesssim T)=(S \times T, \lesssim)$, where

$$
\left(s_{1}, t_{1}\right) \lesssim\left(s_{2}, t_{2}\right) \Longleftrightarrow s_{1}<s s_{2} \vee\left(s_{1} \sim s s_{2} \wedge t_{1} \lesssim \tau t_{2}\right) .
$$

Lemma

$$
\begin{aligned}
\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right) & \Longleftrightarrow a_{1} \sim_{A} a_{2} \wedge b_{1} \sim_{B} b_{2} \\
\left(a_{1}, b_{1}\right) \sharp\left(a_{2}, b_{2}\right) & \Longleftrightarrow a_{1} \sharp_{A} a_{2} \vee\left(a_{1} \sim_{A} a_{2} \wedge b_{1} \sharp_{B} b_{2}\right) .
\end{aligned}
$$

Lexicographic product example

Minimal Sets

Definition (Min-sets)

Suppose that (S, \lesssim) is a pre-ordered set. Let $A \subseteq S$ be finite. Define

$$
\begin{aligned}
\min _{\lesssim}(A) & \equiv\{a \in A \mid \forall b \in A: \neg(b<a)\} \\
\mathcal{P}(S, \lesssim) & \equiv\left\{A \subseteq S \mid A \text { is finite and } \min _{\lesssim}(A)=A\right\}
\end{aligned}
$$

Definition (Min-Set Semigroup)

Suppose that (S, \lesssim) is a pre-ordered set. Then

$$
\mathcal{P}_{\text {min }}^{\cup}(S, \lesssim)=\left(\mathcal{P}(S, \lesssim), \oplus_{\min }^{\lesssim}\right)
$$

is the semigroup where

$$
A \oplus_{\min }^{\lesssim} B \equiv \min _{\lesssim}(A \cup B) .
$$

Min-Set-Map construction

Definition

Suppose that $S=(S, \lesssim, F)$ a routing algebra in the style of Sobrinho [Sob03, Sob05]. Then

$$
\operatorname{minsetmap}(S) \equiv\left(\mathcal{P}(S, \lesssim), \oplus_{\text {min }}^{\leftrightharpoons}, F_{\text {min }}^{〔}\right)
$$

where $F_{\text {min }}^{〔}=\left\{g_{f} \mid f \in F\right\}$ and

$$
g_{f}(A) \equiv \min _{\lesssim}(\{f(a) \mid a \in A\}) .
$$

Let's turn to BGP MED's - First, hot potato

Cold Potato

The (4) represents a MED value.

The System med-evil [MGWR02, Sys].

The values (0) and (1) represent MED values sent by AS 4. The other values are IGP link weights.

Best route selection at nodes A and B.

- r_{C}, r_{D} and r_{E} denote routes received from routers C, D, and E , respectively
- A receives route r_{E} through route reflector B
- B receives routes r_{C} and r_{D} through route reflector A

u	S	BGP best of S at u	due to
A	$\left\{r_{C}, r_{D}\right\}$	r_{D}	IGP
A	$\left\{r_{D}, r_{E}\right\}$	r_{E}	MED
A	$\left\{r_{E}, r_{C}\right\}$	r_{C}	IGP
A	$\left\{r_{C}, r_{D}, r_{E}\right\}$	r_{C}	MED, IGP
B	$\left\{r_{D}, r_{E}\right\}$	r_{E}	MED
B	$\left\{r_{E}, r_{C}\right\}$	r_{C}	IGP

There is not stable routing!

Assume A always has routes r_{C} and r_{D}, so only two cases:

- A knows the routes $\left\{r_{C}, r_{D}, r_{E}\right\}$ and so selects r_{C}. This implies that B has chosen r_{E}, and this is a contradiction, since B would have $\left\{r_{E}, r_{C}\right\}$ and select r_{C}.
- A has only $\left\{r_{C}, r_{D}\right\}$ and selects r_{D}. Since A does not learn a route from B, we know that B must have selected r_{C}. This is a contradiction since B would learn r_{D} from A and then pick r_{E}.

What's going on with MED?

- Assume MEDs are represented by pairs of the form (a, m), where a is an ASN and m is an integer metric.
- The partial order on MEDs is defined as

$$
\left(\alpha_{1}, m\right) \lesssim M\left(\alpha_{2}, n\right) \equiv \alpha_{1}=\alpha_{2} \wedge m \lesssim n
$$

- We can think abstractly of BGP routes as elements of

$$
\left(P, \lesssim_{P}\right) \overrightarrow{\times}\left(M, \lesssim_{M}\right) \overrightarrow{\times}(S, \lesssim s)
$$

where $\left(P, \lesssim_{P}\right)$ represents the prefix of attributes considered before MED, and ($S, \lesssim s$) represents the suffix of attributes considered after MED.

What is going on?

Suppose that we have the lexicographic product,

$$
\left(A, \lesssim_{A}\right) \overrightarrow{\times}(B, \lesssim B) \equiv(A \times B, \lesssim),
$$

and that W is a finite subset of $A \times B$. We would like to explore efficient (and correct) methods for computing the min-set $\min _{\lesssim}(W)$.

- Let \sim_{A} and \sim_{B} be the preorders on A and B for which all elements are related.

Pipeline method

We say the pipeline method is correct when

$$
\min _{\lesssim_{A} \overrightarrow{\times} \lesssim_{B}}(W)=\min _{\sim_{A} \overrightarrow{\times} \lesssim_{B}}\left(\min _{\lesssim_{A} \vec{x} \sim_{B}}(W)\right)
$$

Pipeline

Claim

The pipeline method is correct if and only if no two elements of B are strictly ordered, or no two elements of A are incomparable.

Proof : For the the interesting direction, suppose that A does contain two elements a_{1} and a_{2} with $a_{1} \sharp a_{2}$, and B does contain two elements b_{1} and b_{2} with $b_{1}<_{B} b_{2}$. Then

$$
\min _{\lesssim A \vec{x} \lesssim_{B}}\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}
$$

but

$$
\begin{aligned}
& \min _{\omega_{A} \times \lesssim_{B}}\left(\min _{\lesssim_{A} \times \omega_{B}}\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}\right) \\
= & \min _{\omega_{A} \times \lesssim_{B}}\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\} \\
= & \left\{\left(a_{1}, b_{1}\right)\right\} .
\end{aligned}
$$

Bibliography I

[MGWR02] D. McPherson, V. Gill, D. Walton, and A. Retana.
BGP persistent route oscillation condition.
Internet Draft
draft-ietf-idr-route-oscillation-01.txt, Work In Progress, 2002.
[Sob03] Joao Luis Sobrinho.
Network routing with path vector protocols: Theory and applications.
In Proc. ACM SIGCOMM, September 2003.
[Sob05] Joao Luis Sobrinho.
An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking, 13(5):1160-1173, October 2005.

Bibliography II

[Sys] Cisco Systems.
Endless BGP convergence problem in Cisco IOS software releases.
Field Note, October 10 2001,
http://www.cisco.com/warp/public/770/
fn12942.html.

