
An Algebraic Approach to Internet Routing
Part III

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory

University of Cambridge, UK

Departamento de Ingeniería Telemática
Escuela Politécnica Superior

Universidad Carlos III de Madrid
16, 17, 18 March, 2009

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part III UC3M 03/2009 1 / 43



Outline for Wednesday

A mini-metalanguage for routing algebras
The Metarouting Toolkit (prototype)
On algebraic metalanguage design
Min-set constructions and multi-path routing
A word about hot and cold potatoes
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A simple grammar for a mini-metalanguage
Our mini-metalanguage will describe routing algebras

(S, ⊕, F ⊆ S → S)

⊕ is commutative, idempotent, and has identity α.

base ::= sp
| bw
| rel

algebra ::= term
| right term
| left term
| lex_product term ... term
| function_union term ... term

term ::= base
| (algebra)
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The Semantics

For category base

[[sp]]B = (N ∪ {∞}, min, F+)

[[bw]]B = (N ∪ {∞}, max, Fmin)

[[rel]]B = ([0, 1],max, F×)

For category term

[[b]]T = [[b]]B

[[(a)]]T = [[a]]A
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The Semantics

For category algebra

[[t]]A = [[t]]B

[[right t]]A = (S, ⊕, {i})
I where [[t]]T = (S, ⊕, F )

[[left t]]A = (S, ⊕, K (S))
I where [[t]]T = (S, ⊕, F )
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The Semantics

[[lex_product t]]A = [[t]]T

[[lex_product t t′]]A = (S, ⊕, F ) ~× (T , �, G) =
(S × T , ⊕ ~×�, F ×G)

I where [[t]]T = (S, ⊕, F )
I and [[t′]]T = (T ,� G)

[[lex_product t t′ ... t′′]]A = (S, ⊕, F ) ~× (T , �, G) =
(S × T , ⊕ ~×�, F ×G)

I where [[t]]T = (S, ⊕, F )
I and [[lex_product t′ ... t′′]]A = (T ,� G)
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The Semantics

[[function_union t]]A = [[t]]T

[[function_union t t′]]A = (S, ⊕, F ) +m (S, ⊕, G) =
(S, ⊕, F ∪G)

I where [[t]]T = (S, ⊕, F )
I and [[t′]]T = (S,⊕ G)

[[functon_union t t′ ... t′′]]A = (S, ⊕, F ) +m (S, ⊕, G) =
(S, ⊕, F ∪G)

I where [[t]]T = (S, ⊕, F )
I and [[functon_union t′ ... t′′]]A = (S,⊕ G)
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Some interesting properties

Property Definition
M ∀a,b ∈ S ∀f ∈ F : f (a⊕ b) = f (a)⊕ f (b)
C ∀a,b ∈ S ∀f ∈ F − {ω} : f (a) = f (b) =⇒ a = b
K ∀a,b ∈ S ∀f ∈ F : f (a) = f (b)
I ∀a ∈ S ∀f ∈ F : a 6= α =⇒ a <L

⊕ f (a)
ND ∀a ∈ S ∀f ∈ F : a ≤L

⊕ f (a)
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We know a few rules ...

(some of the) rules needed for global optimality

M(right(S))

M(left(S))

C(right(S))

K(left(S))M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (C(S) ∨ K(T ))

M(S +m T ) ⇐⇒ M(S) ∧ M(T )
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... and a few more rules

(some of the) rules needed for local optimality (and for
loop-freedom in next-hop forwarding)

I(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ I(T ))

ND(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ ND(T ))

I(S +m T ) ⇐⇒ I(S) ∧ I(T )

ND(S +m T ) ⇐⇒ ND(S) ∧ ND(T )
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We can turn rules into bottom-up methods

Example : The ⇐⇒ rule

M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (C(S) ∨ K(T ))

becomes a bottom-up method for deriving property M or property ¬M

for any expression
e = lex_product t1 t2

if derive and derive then derive
properties for t1 properties for t2 property for e

M, C M M

M M, K M

¬M ¬M

¬M ¬M

¬C ¬K ¬M
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Magic
We know everything about our base algebras

M C K I ND

sp yes yes no yes yes
bw yes no no no yes

rel yes yes no no yes

Now, for each algebra expression a defined by our mini-metalanguage
and each property P, we can determine in a bottom-up manner
whether

P([[a]]A)

or
¬P([[a]]A)

holds.

No proofs required at algebra specification time!
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A few examples

M C K I ND

lex_product sp bw yes no no yes yes
(lex_product sp sp yes yes no yes yes
lex_product bw sp no no no yes yes

lex_product rel bw yes no no no yes
lex_product rel bw sp yes no no yes yes
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(Prototype) Metarouting System

Check

Link

Routing algorithms
e.g. gBGP, gOSPF, Bellman-Ford

Protocol
specification

Protocol
implementation

Routing language processing

RAML
Extract

IRL

Properties Properties

CompileSplit
C++

Target algorithm information

Compilation

Specification : Algorithms are currently picked from a menu, while
the routing language is specified in terms of the Routing Algebra
Meta-Language (RAML).
Errors: Each algorithm is associated with properties it requires of
a routing language (Example : Dijkstra requires a total order on
metrics). Properties are automatically derived from RAML
expressions. An error is reported when there is a mis-match.
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Meet the Metarouters!
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From left to right ...

Philip Taylor
I Router configuration languages, vectoring protocols

John Billings
I Compilation, route redistribution, off-line algorithms

M. Abdul Alim
I Link state protocols, route redistribution

Vilius Naudziunas
I Automating theorem proving at system design-time

Tim Griffin
I Confusion

Balraj Singh
I Metaforwarding

Alex Gurney
I Algebraic theory

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part III UC3M 03/2009 16 / 43



Our evolving metalanguage

Our current metalanguage is much larger than the
mini-metalanguage.
Dozens of constructors, dozens of properties.
Hundreds of rules.

I Automating the tedium of specification correctness!
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Let’s implement a simple scoped-product example

Region A Region B

<edist=3, epath=[‘A’], idist=7, ipath=[‘X’, ‘Y’]>

route-policy
set internal idist 30
set internal ipath ‘X’

end-policy

route-policy
set external edist 30
set external epath ‘A’
set external idist 1
set external ipath empty

end-policy
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The external algebra

let inter_region =
lex_product
<
edist : lte_plus,
epath : simple_paths,
idist : left lte_plus,
ipath : left simple_paths

>
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The internal algebra

let intra_region =
lex_product
<
edist : right lte_plus,
epath : right simple_paths,
idist : lte_plus,
ipath : simple_paths

>
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The complete algebra

let regions =
function_union
<
external : inter_region,
internal : intra_region

>
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Example: regions

Compile to C++
Plug into e.g generalized BGP algorithm
Deploy on routers
Or create offline simulator
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Example: generated code (you are not expected to
understand it!)
struct times_out
{
ty11 operator()(ty7 node, ty12 export_, ty6 signature_outer_or_error)
{

ty11 var73;
switch (signature_outer_or_error.tag_)
{

case ty11::CONST: break; // Const
case ty11::REST:
{

ty5 signature(signature_outer_or_error.value_);
ty11 var75;
switch (export_.tag_)
{

case 1:
{

Unit x2(*export_.v1_);
IntBigPos var80(signature.v1_);
String var83(node.v1_);
ty1 var85(signature.v2_);
ty1 var82(ListSimpCons()(var83, var85)); [...]

} [...]
}
var73 = var75;
break;

}
}
return var73;
}

};
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The metalanguage spans multiple classes of algebraic
structures

The Quadrants
NW

Bisemigroups

(S, ⊕, ⊗)

NE

Order Semigroups

(S, ≤, ⊗)

SW

Semigroup Transforms

(S, ⊕, F )

SE

Order Transforms

(S, ≤, F )
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Moving around

Operations for translations between quadrants are in the
metalanguage.

A few examples

(S, ⊕, ⊗) � natord //
_

cayley
��

(S, ≤, ⊗)
_

cayley
��

(S, ⊕, F ) � natord // (S, ≤, F )
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Properties get dragged along

(a 6= 0 =⇒ a = a⊕ (b ⊗ a))∧
(b ⊗ a = a⊕ (b ⊗ a) =⇒ a = 0)

�natord //

_

cayley
��

a 6= > =⇒ a < b ⊗ a_

cayley

��(a 6= 0 =⇒ a = a⊕ f (a))∧
(f (a) = a⊕ f (a) =⇒ a = 0)

�natord // a 6= > =⇒ a < f (a)
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New, experimental constuctors for “min-sets”

For explicit multi-path routing.

Definition (First, Derived Order Relations)

a < b ≡ a . b ∧ ¬(a . b) a is (strictly) less than b

a ∼ b ≡ a . b ∧ b . a a is equivalent to b

a � b ≡ a . b ∨ b . a a is comparable with b

a ] b ≡ ¬(a . b) ∧ ¬(b . a) a is incomparable with b.
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Direct Product Order

Definition (Direct Product)
Let (S,.S) and (T ,.T ) be preordered sets. Then their direct product
is denoted (S,.S)× (T ,.T ) = (S × T ,.), where

(s1, t1) . (s2, t2) ⇐⇒ s1 .S s2 ∧ t1 .T t2.

Lemma
(a1,b1) ∼ (a2,b2) ⇐⇒ a1 ∼A a2 ∧ b1 ∼B b2

(a1,b1) ] (a2,b2) ⇐⇒


a1 ] a2∨
b1 ] b2∨
(a2 < a1 ∧ b1 < b2)∨
(b2 < b1 ∧ a1 < a2)
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Direct product example

D

C

??~~~~
B

__????

A

__@@@@
??����

× 1

0

OO =

(D,1)

(D,0)

OO

(C,1)

BB�����������
(B,1)

\\88888888888

(C,0)

OO

BB�����������
(B,0)

OO

\\88888888888

(A,1)

\\88888888888

BB�����������

(A,0)

OO

\\88888888888

BB�����������
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Lexicographic Product Order

Definition (Lexicographic Product)
Let (S,.S) and (T ,.T ) be preordered sets. Then their Lexicographic
product is denoted (S,.S) ~× (T ,.T ) = (S × T ,.), where

(s1, t1) . (s2, t2) ⇐⇒ s1 <S s2 ∨ (s1 ∼S s2 ∧ t1 .T t2).

Lemma
(a1,b1) ∼ (a2,b2) ⇐⇒ a1 ∼A a2 ∧ b1 ∼B b2
(a1,b1) ] (a2,b2) ⇐⇒ a1 ]A a2 ∨ (a1 ∼A a2 ∧ b1 ]B b2).
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Lexicographic product example

D

C

??~~~~
B

__????

A

__@@@@
??����

~× 1

0

OO =

(D,1)

(D,0)

OO

(C,1)

99sssss
(B,1)

eeKKKKK

(C,0)

OO

(B,0)

OO

(A,1)

eeKKKKK
99sssss

(A,0)

OO
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Minimal Sets

Definition (Min-sets)
Suppose that (S, .) is a pre-ordered set. Let A ⊆ S be finite. Define

min.(A) ≡ {a ∈ A | ∀b ∈ A : ¬(b < a)}

P(S, .) ≡ {A ⊆ S | A is finite and min.(A) = A}

Definition (Min-Set Semigroup)
Suppose that (S, .) is a pre-ordered set. Then

P∪min(S, .) = (P(S, .), ⊕.
min)

is the semigroup where

A ⊕.
min B ≡ min.(A ∪ B).
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Min-Set-Map construction

Definition
Suppose that S = (S, ., F ) a routing algebra in the style of
Sobrinho [Sob03, Sob05]. Then

minsetmap(S) ≡ (P(S, .), ⊕.
min, F.

min)

where F.
min = {gf | f ∈ F} and

gf (A) ≡ min.({f (a) | a ∈ A}).
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Let’s turn to BGP MED’s — First, hot potato
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Cold Potato

The (4) represents a MED value.
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The System MED-EVIL [MGWR02, Sys].

The values (0) and (1) represent MED values sent by AS 4. The other
values are IGP link weights.
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Best route selection at nodes A and B.

rC , rD and rE denote routes received from routers C, D, and E,
respectively
A receives route rE through route reflector B
B receives routes rC and rD through route reflector A

u S BGP best of S at u due to
A {rC , rD} rD IGP
A {rD, rE} rE MED
A {rE , rC} rC IGP
A {rC , rD, rE} rC MED, IGP
B {rD, rE} rE MED
B {rE , rC} rC IGP

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part III UC3M 03/2009 37 / 43



There is not stable routing!

Assume A always has routes rC and rD, so only two cases:
A knows the routes {rC , rD, rE} and so selects rC . This implies
that B has chosen rE , and this is a contradiction, since B would
have {rE , rC} and select rC .
A has only {rC , rD} and selects rD. Since A does not learn a route
from B, we know that B must have selected rC . This is a
contradiction since B would learn rD from A and then pick rE .
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What’s going on with MED?

Assume MEDs are represented by pairs of the form (a, m), where
a is an ASN and m is an integer metric.
The partial order on MEDs is defined as

(α1, m) .M (α2, n) ≡ α1 = α2 ∧m . n.

We can think abstractly of BGP routes as elements of

(P, .P) ~× (M, .M) ~× (S, .S),

where (P, .P) represents the prefix of attributes considered
before MED, and (S, .S) represents the suffix of attributes
considered after MED.
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What is going on?

Suppose that we have the lexicographic product,

(A, .A) ~× (B, .B) ≡ (A× B,.),

and that W is a finite subset of A× B. We would like to explore
efficient (and correct) methods for computing the min-set min.(W ).

Let ∼A and ∼B be the preorders on A and B for which all elements
are related.

Pipeline method
We say the pipeline method is correct when

min
.A~×.B

(W ) = min
∼A~×.B

( min
.A~×∼B

(W )).
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Pipeline
Claim
The pipeline method is correct if and only if no two elements of B are
strictly ordered, or no two elements of A are incomparable.

Proof : For the the interesting direction, suppose that A does contain
two elements a1 and a2 with a1 ] a2, and B does contain two elements
b1 and b2 with b1 <B b2. Then

min
.A~×.B

{(a1,b1), (a2,b2)} = {(a1,b1), (a2,b2)}

but

min
ωA×.B

( min
.A×ωB

{(a1,b1), (a2,b2)})

= min
ωA×.B

{(a1,b1), (a2,b2)}

={(a1,b1)}.

So the pipelined decision process does work when we are dealing
exclusively with total pre-orders. However, it fails to give all of correct
results when we move to general pre-orders.
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